Performance Evaluation of Exponential Discriminant Analysis with Feature Selection for Steganalysis

نویسنده

  • Gaurav Rajput
چکیده

The performance of supervised learning-based seganalysis depends on the choice of both classifier and features which represent the image. Features extracted from images may contain irrelevant and redundant features which makes them inefficient for machine learning. Relevant features not only decrease the processing time to train a classifier but also provide better generalisation. Linear discriminant classifier which is commonly used for classification may not be able to classify in better way non-linearly separable data. Recently, exponential discriminant analysis, a variant of linear discriminant analysis (LDA), is proposed which transforms the scatter matrices to a new space by distance diffusion mapping. This provides exponential discriminant analysis (EDA) much more discriminant power to classify non-linearly separable data and helps in improving classification accuracy in comparison to LDA. In this paper, the performance of EDA in conjunction with feature selection methods has been investigated. For feature selection, Kullback divergence, Chernoff distance measures and linear regression measures are used to determine relevant features from higher-order statistics of images. The performance is evaluated in terms classification error and computation time. Experimental results show that exponential discriminate analysis in conjunction with linear regression significantly performs better in terms of both classification error and compilation time of training classifier.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature selection using genetic algorithm for classification of schizophrenia using fMRI data

In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...

متن کامل

A Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation

Abstract   Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...

متن کامل

Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy

Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...

متن کامل

Textural features based universal steganalysis

This paper takes the task of image steganalysis as a texture classification problem. The impact of steganography to an image is viewed as the alteration of image texture in a fine scale. Specifically, stochastic textures are more likely to appear in a stego image than in a cover image from our observation and analysis. By developing a feature extraction technique previously used in texture clas...

متن کامل

Feature mining and pattern classification for steganalysis of LSB matching steganography in grayscale images

In this paper, we present a scheme based on feature mining and pattern classification to detect LSB matching steganography in grayscale images, which is a very challenging problem in steganalysis. Five types of features are proposed. In comparison with other well-known feature sets, the set of proposed features performs the best. We compare different learning classifiers and deal with the issue...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012